Cite this: Org. Biomol. Chem., 2012, 10, 1730

www.rsc.org/obc

COMMUNICATION

First kinetic evidence for the CH/ π and π/π solute–solvent interaction of C₆₀ in the Diels–Alder reaction with cyclohexadiene[†]

Takumi Oshima,* Tsubasa Mikie, Naohiko Ikuma and Hajime Yakuma

Received 18th October 2011, Accepted 24th November 2011 DOI: 10.1039/c2ob06748j

The first CH/ π solute-solvent interaction of C₆₀ was evidenced by the kinetic solvent effects in the Diels-Alder reaction with 1,3-cyclohexadiene based on the evaluation of linear free energy relationship of log k_2 with empirical solvent polarity and basicity parameters, $E_{\rm T}(30)$ and D_{π} , respectively.

Due to its spherical molecular structure and highly conjugated double-bond system, C₆₀ fullerene has received much attention with respect to its physicochemical properties as well as its synthetic applications in biological and materials science.¹ Mostly, chemical modifications and functionalizations are carried out in organic solvents and thus the solution behavior of C₆₀ will provide useful information on selecting solvents for practical processing. There are some studies concerning the interaction of C_{60} with solvent molecules, *e.g.*, the solubility in organic solvents² and the spectroscopic and thermodynamic analyses of solvent complexation.³ Of further interest is the formation of C_{60} solvates (or clathrates) with alkanes,⁴ halogenated alkanes,^{4c,5} benzenes⁶ and halobenzenes.⁷ These solvent molecules are intercalated between the bulky C₆₀ balls. Nishio et al.⁸ searched the Cambridge Crystallographic Database and disclosed that weak forces, such as CH/π interactions, play vital roles in deciding the solid structures of C₆₀ complexes. However, little is known about the solvation effects on the dynamic chemical reactions of C₆₀ probably because of poor solubility in common solvents. Therefore, a systematic study of the kinetic solvent effects is needed to give an insight into the solute-solvent interaction of C₆₀ in the initial state as well as the solvation of transition state.⁹

Recently, we have reported that the rate of 1,3-dipolar cycloaddition of diazodiphenylmethane (DDM) with C_{60} in various solvents has a tendency to increase with increasing solvent polarity but decrease with increasing solvent basicity.¹⁰ This cycloaddition seems to be insufficient to evaluate the specific solute–solvent interaction of C_{60} due to the intervention of solvation of a possible polar transition state (as indicated by the Hammett's ρ value of -1.6). This situation prompted us to choose an ideal C_{60} reaction *via* a less polar transition state¹¹ and explore the initial state solvation of C_{60} . In this paper, we wish to report the kinetic solvent effects on the Diels–Alder (DA) reaction of C_{60}/C_{70} with 1,3-cyclohexadiene (Scheme 1)¹² and disclose the CH/ π and π/π interactions of C_{60} on the basis of the linear free energy relationship of log k_2 with solvent polarity and basicity parameters.

The kinetic measurements for the DA reaction of C₆₀ and C₇₀ with cyclohexadiene were performed under pseudo-first order conditions in various solvents at 30 °C by using a large excess of diene (>50 equiv) relative to fullerenes $(1.0 \times 10^{-5} - 10^{-2} \text{ M})$. This DA reaction exclusively occurs at the [6,6] conjunct C=C double bond to give the 1:1 adduct.¹² The monoaddition generally results in the drop of reactivity to about 1/3 of the parent C_{60} due to the reduced π -conjugation.¹³ The progress of the reaction was followed by monitoring the consumption of C_{60} with HPLC according to the previous manner (Fig. S1[†]).^{10,13} The obtained second order rate constants k_2 (M⁻¹s⁻¹) are collected in Table 1 along with the Reichardt's solvent polarity parameter $E_{\rm T}(30)^9$ and the solvent basicity parameter D_{π} reflecting the electron pair donor (EPD) basicity.^{10,14} The kinetic data indicated that C_{60} is 1.3–2.1 times more reactive than C_{70} .¹⁵ In previous work, we have obtained almost the same values of 1.3-2.0 for 1,3-dipolar cycloaddition of C₆₀/C₇₀ with various *m*- and *p*-substituted diazodiphenylmethanes.¹⁰ It was also found that a plot of log $k_2(C_{70})$ vs. log $k_2(C_{60})$ provided an excellent linear correlation (eqn (1) and Fig. 1). The slope of 1.2 means there is a little more enhanced susceptibility of the C70 reaction on the nature of the solvents compared to the C₆₀ reaction. This is probably because of the slightly more polar C₇₀ transition state as estimated from the somewhat stronger electron-withdrawal of $C_{70} (E_{red} = -0.41 (vs \text{ SCE, CH}_2Cl_2) vs. C_{60} (-0.44 \text{ V})).^{16}$

 $C_{60}(C_6H_8)$

Graduate School of Engineering, Osaka University, Suita, Osaka,

Japan. E-mail: oshima@chem.eng.osaka-u.ac.jp;

Fax: +81 6 6879 4593; Tel: +81 6 6879 4591

[†]Electronic supplementary information (ESI) available: [DETAILS]. See DOI: 10.1039/c2ob06748j

		$10^5 k_2^{a} (\mathrm{M}^{-1} \mathrm{s}^{-1})$			
	Solvents	C ₆₀	C ₇₀	$E_{\rm T}(30)$	$D_{\pi}^{\ b}$
1	Benzonitrile	22.6	17.7	41.6	- 0.398
2	Bromobenzene	14.7	9.64	36.6	-1.03
3	o-Dichlorobenzene	14.1	9.00	38.0	-1.17
4	Anisole	13.7	8.84	37.1	-0.043
5	Chlorobenzene	13.3	8.26	36.8	-0.903
6	1-Methylnaphthalene	12.8		35.3	0.262
7	Benzene	12.1	7.52	34.3	0.000
8	Toluene	10.8		33.9	0.394
9	Dichloromethane	10.3	6.43	41.1	-1.30
10	Tetralin	9.74	5.77	33.5	0.650
11	Carbon disulfide	8.95	5.33	32.8	
12	Tetrachloromethane	8.68	4.82	32.4	
13	Trichloromethane	7.91	4.80	39.1	-1.56
14	<i>n</i> -Hexane	7.77	4.70	31.0	
15	<i>p</i> -Xylene	7.47	4.58	33.1	0.846
16	Mesitylene	5.74	3.37	32.9	1.36

Table 1Second-order rate constants k_2 for the Diels–Alder reaction of C_{60} and C_{70} with 1,3-cyclohexadiene at 30 °C in various solvents

^a Average of at least two measurements. Error limit	is ±2	2%. ^b Th	D_1
values for o-dichlorobenzene, 1-methylnaphthalene,	and	tetralin	were
newly obtained according to the previous procedure ¹⁴			

Fig. 1 A plot of log $k_2(C_{70})$ vs. log $k_2(C_{60})$ for the Diels–Alder reaction with cyclohexadiene in 14 aprotic solvents. For point numbers, see Table 1.

log
$$k_2$$
 (C₇₀) = 1.18log k_2 (C₆₀) + 0.512 ($R^2 = 0.99, n = 14$)
(1)

For the overall kinetic solvent effects, we must consider the solvation of both the initial reactants and the transition state.⁹ A survey of Table 1 shows a very small variation of k_2 regardless of a wide range of $E_{\rm T}(30)$ (31.0–41.6); *i.e.*, $k_{\rm benzonitrile}/k_{\rm mesitylene} = ca.$ 4 and 6 for C₆₀ and C₇₀ reactions, respectively. This finding implies that the DA reactions of C₆₀/C₇₀ with cyclohexadiene proceed through the less polar transition states.

Fig. 2 Plots of log k_2 (C₆₀) vs E_T (30) in various solvents. 12 solvents included in the correlation (eqn (2)); 4 outlying solvents (open circle) were excluded from the correlation. For point numbers, see Table 1.

Nevertheless, a plot of log $k_2(C_{60})$ with the solvent polarity parameter $E_T(30)$ gave an excellent linear free energy relationship with very gentle slope (m = 0.0429, $R^2 = 0.96$) except for downward deviating four solvents; p-xylene, mesitylene, CH₂Cl₂, and CHCl₃ (eqn (2) and Fig. 2). The C₇₀ reaction also provided a similar plot of log $k_2(C_{70})$ vs $E_T(30)$ except the same deviating solvents (m = 0.0541, $R^2 = 0.95$, n = 10; Fig. S2†). As a consequence of poor solvation, we could take advantage of the present DA reaction as the model reaction in evaluating the delicate specific solute–solvent interaction of the initial-state C₆₀ (vide infra).

$$\log k_2 (C_{60}) = 0.0429 E_T(30) - 5.44 (R^2 = 0.96, n = 12)$$
(2)

The apparent downward deviation from the regression line may be related to the increase in ΔG^{\neq} (Gibbs free energy of activation) by about 0.64 and 1.0 kcal mol^{-1} at 30 °C for the typical mesitylene and CHCl₃, respectively. The free energy gain of retarding the rate should be ascribed to the specific solvation of the initial-state C_{60} . The typical π -donor solvents, *p*-xylene and mesitylene, do perform the definite charge-transfer type face-toface π/π interaction with π -acceptor C₆₀,³ bringing about the noticeable rate reduction (vide infra). Such an interaction is well recognized in aromatic solvents¹⁷ and also in solvate formation with some aromatic solvents,⁷ as well as in the inclusion complexation with various π -conjugated systems.¹⁸ By contrast, however, CH_2Cl_2 and $CHCl_3$ do not form a π/π complex with C_{60} , hence their deviations must be attributable to a quite different type of solute-solvent interaction. As to the specific solvation of these haloalkanes, we will describe this in the later section.

Since the present DA reaction belongs to the normal HOMO_{diene}-LUMO_{fullerene} controlled type, the basic π -donor solvents raise the fullerene LUMO energy due to the π -electron

donation and hence decrease the reaction rate.¹⁹ Indeed, the DA reaction of the stronger π -acceptor TCNE with anthracene exhibited a more enhanced rate reduction with increasing solvent π -basicity and gave a good linear free energy relationship between log k_2 and D_{π} (slope m = -0.76, $R^2 = 0.93$, n = 11, for some data by extrapolation at 30 °C).²⁰ The D_{π} parameter was also successfully applied to the kinetic solvent effects of the typical π -acceptor reactions, eg, 1,3-dipolar cycloadditions of DDM with 2,3-dichloro-5,6-dicyano-4-benzoquinone (DDQ),²¹ 2,3-dicyano-4-benzoquinone,²² fluoranil,²² as well as C₆₀.¹⁰

With these considerations in mind we attempted to correlate log $k_2(C_{60})$ with D_{π} in order to evaluate the π -acceptor ability of fullerenes. Surprisingly, however, a Λ -shaped plot with two solvent groups (*line a* and *b*) was observed with the peak top at the most polar benzonitrile (Fig. 3). The *line a* solvents are characterized by nonhaloarene π -donor solvents and gave a good regression equation with the negative slope (eqn (3), m = -0.309). This rate decreasing tendency with increasing D_{π} may be caused by the stabilization of C_{60} due to the π - π interaction. However, the less basic *line b* solvents showed the unexpected rate increasing tendency with increasing D_{π} (eqn (4), m = 0.371).

$$\log k_2 (C_{60}) = -0.309 D_{\pi} - 3.84 (R^2 = 0.93, n = 8) \quad (3)$$

$$\log k_2 (C_{60}) = 0.371 D_{\pi} - 3.49 (R^2 = 0.91, n = 6)$$
(4)

Why do the *line b* solvents exhibit the reverse rate rising tendency with increasing D_{π} basicity? Before discussing this intriguing phenomenon, it is worthwhile to note that some *line b* solvents such as CHCl₃, chloro- and bromobenzenes rather accelerated the rate of the DA reaction of TCNE with anthracene²⁰ and gave an excellent linear correlation between log k_2 and D_{π} including several *line a* solvents like benzene and toluene. Therefore, the answer seems to be the switching in the solvation manner of C₆₀ from the π - π interaction (*line a*) to the CH/ π interaction (*line b*).^{8,23} A systematic search in the

Fig. 3 Plots of log k_2 (C₆₀) vs D_{π} . For point numbers, see Table 1.

Cambridge Structural Database disclosed that the CH/ π interactions work between the C₆₀ convex surface and the haloalkanes such as CHCl3 and CH2Cl2 as well as the aromatic compounds.8 Atwood et al. reported these haloalkanes are effective solvents in retrieving guest C₆₀ from some inclusion complexes with cyclotriveratrylene and calixarenes probably because of the CH/ π interaction with i) host molecules and/or ii) guest C₆₀.^{18a,24} Although *line a* aromatic solvents perform the dominant face-to-face π/π interaction with C₆₀, the *line* b haloarene solvents would show edge-to-face type CH/ π interaction,²⁵ accounting for the abnormal lower deviation. To the best of our knowledge, this is the first observation of the solute-solvent CH/ π interaction of C₆₀ because the present DA reaction undergoes very poor transition-state solvation (Table 1). According to Pearson's hard-soft-acid-base principle,²⁶ the CH/ π interaction occurs between a C-H bond of soft acid and a π -bond of soft base. The present CH/ π interaction can be explained in such a way that the soft acidic unoccupied C-H σ^* -bond (LUMO+3, +0.07 eV, Fig. S3^{\dagger})²⁷ of CHCl₃ do not effectively interact with the very lower lying HOMO $(-9.41 \text{ eV})^{27}$ of the soft π -acid TCNE, but with the 60π -conjugated high lying HOMO (-6.40 eV)²⁷ of C₆₀. On the other hand, similar calculation for the strong π -donor mesityrene gave a rather high HOMO (-6.42 eV),²⁷ which could interact with the lower lying LUMO (-3.68 eV) of C₆₀ (Fig. 4 a).

It seems likely that C_{60} can perform multi CH/π and π/π interactions on the spherical surface with larger exterior π -orbital lobes, as depicted in Fig. 4 (b) and (c). Thus, the desolvation of the bound solvent molecules is responsible for the rate reduction in the present DA reaction. Although the energy of CH/π interaction of $CHCl_3$ with aromatic hydrocarbons is reported to be as small as 1.5–3 kcal mol⁻¹,²⁸ this weak molecular force plays a vital role in many areas of chemistry and biology.^{8c,23a} As such

Fig. 4 (a) Orbital interactions of possible solute–solvent interaction between C_{60} and mesitylene/CHCl₃; the orbital energy level (eV) was calculated by B3LYP/6-31+G*. Schematic representation of (b) π/π interaction with mesitylene and (c) CH/ π interaction with CHCl₃; positional geometry and number of solvents are arbitrarily drawn.

Fig. 5 Bimolecular calculations of C_{60} and trichloromethane by B3LYP/6-31+G*; (A) C–H bond directs to the centre of C_{60} , (B) C–H bond directs to the outside.

CH/ π interaction, C–H bond would more favorably orient itself above the pyramidalized sp2 carbon of C₆₀ to give maximum overlap between the relevant orbitals. Of interest is that the haloarene solvents are likely to form the well-recognized edgeto-face CH/ π interaction in preference to the π/π interaction because the electron-withdrawing halogen substituents will reduce the electron density on aromatic rings and instead enhance the C–H soft acidity.²⁹

To assess the CH/ π stabilization energy of C₆₀, we resorted to a simplified bimolecular model using a rough DFT calculation (B3LYP/6-31+G*). It was found that the geometry (A) in which the C–H bond of CHCl₃ is directed inside to the C₆₀ π -face is 0.49 kcal mol⁻¹ more stable than the outside-directed geometry (B) in which there is no interaction between C₆₀ and CHCl₃ (Fig. 5).³⁰ This value is in reasonable agreement with the above estimated 1.0 kcal mol⁻¹ for the CHCl₃ deviation from the regression line (Fig. 2). In geometry (A), the C–H hydrogen is in contact with one of the 6,6-conjunct double bonds of C₆₀, where the π -electron cloud is most effectively distributed. The CH–C(C₆₀) carbon atomic distance (*D*_{ATM}) is 2.86 Å. This value is essentially the same as the mean distance (2.85 Å) of the CH/ π interaction of crystalline fullerene compounds in the Cambridge Structural Database.^{8a}

In summary, the kinetic solvent effects of the Diels–Alder reaction of C_{60}/C_{70} with 1,3-cyclohexadiene were investigated in 16 aprotic solvents. The correlation of log k_2 with the empirical solvent polarity or the basicity parameter, $E_T(30)$ or D_{π} , revealed the appreciable CH/ π and π/π solute–solvent interactions of initial-state C_{60} thanks to the poor solvation of the transition state. This solute–solvent CH/ π interaction is the first example in fullerene chemistry.

Notes and references

 (a) S. R. Wilson, D. I. Schuster, B. Nuber, M. S. Meier, M. Maggini, M. Prato, R. Taylor, *Fullerene Chemistry, Physics and Technology*, John Wiley & Sons Inc. New York, 2000, pp.91–176; (b) A. Hirsch, M. Brettreich, *Fullerenes Chemistry and Reactions*, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005; (c) C. Thilgen and F. Diederich, *Chem. Rev.*, 2006, **106**, 5049; (d) F. Giacalone and N. Martin, *Chem. Rev.*, 2006, **106**, 5136; (e) Y. Matsuo and E. Nakamura, *Chem. Rev.*, 2008, **108**, 3016; (f) N. Martín, F. Giacalone. (eds), *Fullerene Polymers*, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009.

- 2 (a) N. Sivaraman, T. G. Srinivasan, P. R. V. Rao and R. Natarajan, J. Chem. Inf. Model., 2001, 41, 1067; (b) Y. Marcus, A. L. Smith, M. V. Korobov, A. L. Mirakyan, N. V. Avramenko and E. B. Stukalin, J. Phys. Chem. B, 2001, 105, 2499; (c) J.-C. Huang, Fluid Phase Equilib., 2005, 237, 186.
- 3 (a) R. Seshadri, C. N. R. Rao, H. Pal, T. Mukherjee and J. P. Mittal, *Chem. Phys. Lett.*, 1993, **205**, 395; (b) S. H. Gallagher, R. S. Armstrong, P. A. Lay and C. A. Reed, *Chem. Phys. Lett.*, 1996, **248**, 353; (c) M. V. Korobov, A. L. Mirakyan, N. V. Avramenko, G. Olofsson, A. L. Amith and R. S. Ruoff, *J. Phys. Chem. B*, 1999, **103**, 1339; (d) K. Datta, M. Banerjee, B. K. Seal and A. K. Mukherjee, *J. Chem. Soc., Perkin Trans. 2*, 2000, 531; (e) E. B. Stukalin, M. V. Korobov and N. V. Avramenko, *J. Phys. Chem. B*, 2003, **107**, 9692; (f) G. Sarova and M. N. Berberan-Santos, *J. Phys. Chem. B*, 2004, **108**, 17261; (g) M. H. Herbst, G. H. M. Dias, J. G. Magalhães, R. B. Tôrres and P. L. O. Volpe, *J. Mol. Liq.*, 2005, **118**, 9; (h) I. F. Gun'kin and N. Y. Loginova, *Russ. J. Gen. Chem.*, 2006, **76**, 1911.
- 4 (a) Y. Nagano, T. Tamura and T. Kiyobayashi, *Chem. Phys. Lett.*, 1994, 228, 125; (b) R. Céolin, V. Agafonov, B. Bachet, A. Gonthier-Vassal, H. Szwarc, S. Toscani, G. Keller, C. Fabre and A. Rassat, *Chem. Phys. Lett.*, 1995, 244, 100; (c) M. Jansen and G. Waidmann, *Z. Anorg. Allg. Chem.*, 1995, 621, 14.
- 5 (a) N. D. Kushch, I. Majchrzak, W. Ciesielski and A. Graja, *Chem. Phys. Lett.*, 1993, **215**, 137; (b) R. E. Dinnebier, O. Gunnarsson, H. Brumm, E. Koch, P. W. Stephens, A. Huq and M. Jansen, *Science*, 2002, **296**, 109; (c) Q-R. Zheng, G. Su and B. Jin, *Phys. Lett. A*, 2003, **318**, 480.
- 6 M. F. Meidine, P. B. Hitchcock, H. W. Kroto, R. Taylor and D. R. M. Walton, J. Chem. Soc., Chem. Commun., 1992, 1534.
- 7 M. V. Korobov, A. L. Mirakian, N. V. Avramenko, E. F. Valeev, I. S. Neretin, Y. L. Slovokhotov, A. L. Smith, G. Olofsson and R. S. Ruoff, *J. Phys. Chem. B*, 1998, **102**, 3712.
- 8 (a) H. Suezawa, T. Yoshida, S. Ishihara, Y. Umezawa and M. Nishio, *CrystEngComm*, 2003, **5**, 514; (b) M. Nishio, *CrystEngComm*, 2004, **6**, 130; (c) M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama and H. Suezawa, *CrystEngComm*, 2009, **11**, 1757.
- 9 (a) C. Reichardt, Chem. Rev., 1994, 94, 2319; (b) C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Verlag, 3rd ed., Weinheim, Germany, 2003, Chapter 5, p. 147ff.
- 10 T. Oshima, H. Kitamura, T. Higashi, K. Kokubo and N. Seike, J. Org. Chem., 2006, 71, 2995.
- 11 (a) J. B. Briggs and G. P. Miller, C. R. Chim., 2006, 9, 916; (b) S. Osuna, J. Morera, M. Cases, K. Morokuma and M. Solà, J. Phys. Chem. A, 2009, 113, 9721.
- 12 B. Kräutler and J. Maynollo, *Tetrahedron*, 1996, **52**, 5033 The 1:1 adducts of C_{70} were not identified because C_{70} has 4 types of reactive [6,6] bonds leading to several regioisomers in contrast to C_{60} which has only one type of [6,6] bond. See, J. Mestres, M. Duran and M. Solà, *J. Phys. Chem.*, 1996, **100**, 7449.
- 13 (a) N. Ikuma, Y. Susami and T. Oshima, Org. Biomol. Chem., 2010, 8, 1394; (b) N. Ikuma, Y. Susami and T. Oshima, Eur. J. Org. Chem., 2011, 6452.
- 14 T. Oshima, S. Arikata and T. Nagai, J. Chem. Res., 1981, (S) 204, (M) 2518.
- 15 This rate ratio is considerably smaller than the corresponding value of 7 for the DA reaction of C₆₀/C₇₀ with cyclopentadiene at 20 °C in toluene. See: L. S. K. Pang and M. A. Wilson, *J. Phys. Chem.*, 1993, **97**, 6761.
- 16 D. Dubois, K. M. Kadish, S. Flanagan, R. E. Haufer, L. P. F. Chibante and L. J. Wilson, J. Am. Chem. Soc., 1991, 113, 4364.
- 17 I. F. Gun'kin and N. Y. Loginova, Russ. J. Gen. Chem., 2009, 79, 2351.
- (a) J. W. Steed, P. C. Junk, J. L. Atwood, M. J. Barnes, C. L. Raston and R. S. Burkhalter, J. Am. Chem. Soc., 1994, 116, 10346; (b) J. L. Atwood, M. J. Barnes, M. G. Gardiner and C. L. Raston, Chem. Commun., 1996, 1449; (c) J. L. Atwood, G. A. Koutsantonis and C. L. Raston, Nature, 1994, 368, 229; (d) T. Suzuki, K. Nakamura and S. Shinkai, Chem. Lett., 1994, 699; (e) E. C. Constable, Angew. Chem., 1994, 106, 2359, (Angew. Chem., Int. Ed. Engl, 1994, 33, 2269); (f) T. Haino, M. Yanase and Y. Fukazawa, Angew. Chem., 1997, 109, 288, (Angew. Chem., Int. Ed. Engl., 1997, 36, 259); (g) A. Ikeda, Y. Suzuki, M. Yoshimura and S. Shinkai, Tetrahedron, 1998, 54, 2497; (h) T. Kawase and H. Kurata, Chem. Rev., 2006, 106, 5250; (i) K. Tashiro and T. Aida, Chem. Soc. Rev., 2007, 36, 189; (j) T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino and S. Yamago, Angew. Chem., 2011, 123, 8492, (Angew. Chem., Int. Ed., 2011, 50, 8342).
- 19 (a) J. Sauer and R. Sustmann, Angew. Chem., 1980, 92, 773, (Angew. Chem., Int. Ed. Engl., 1980, 19, 779); (b) C. Cativiela, J. I. Garcta,

J. A. Mayoral and L. Salvatella, *Chem. Soc. Rev.*, 1996, **25**, 209; (c) C. Cativiela, J. I. García, J. Gill, R. M. Martínez, J. A. Mayoral, L. Salvatella, J. S. Urieta, A. M. Mainar and M. H. Abraham, *J. Chem. Soc., Perkin Trans.* 2, 1997, 653.

- 20 P. Brown and R. C. Cookson, Tetrahedron, 1965, 21, 1977.
- 21 T. Oshima and T. Nagai, Bull. Chem. Soc. Jpn., 1981, 54, 2039.
- 22 T. Oshima and T. Nagai, Tetrahedron Lett., 1985, 26, 4785.
- 23 (a) M. Nishio, M. Hirota, Y. Umezawa, *The CH/Interaction. Evidence, Nature, and Consequence*, Wiley-VCH: New York, 1998; (b) S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami and K. Tanabe, *J. Phys. Chem. A*, 2002, **106**, 4423; (c) O. Takahashi, Y. Kohno and M. Nishio, *Chem. Rev.*, 2010, **110**, 6049.
- 24 (a) J. L. Atwood, S. G. Bott, C. Jones and C. L. Raston, J. Chem. Soc., Chem. Commun., 1992, 1349; (b) J. L. Atwood, L. J. Barbour, C. L. Raston and I. B. N. Sudria, Angew. Chem., 1998, 110, 1029, (Angew. Chem., Int. Ed., 1998, 37, 981); (c) J. L. Atwood, L. J. Barbour, P. J. Nichols, C. L. Raston and C. A. Sandoval, Chem.-Eur. J., 1999, 5, 990.
- 25 (a) E. Kim, S. Paliwal and C. S. Wilcox, J. Am. Chem. Soc., 1998, 120, 11192; (b) F. Hof, D. M. Scofield, W. B. Schweizer and F. Diederich, Angew. Chem., 2004, 116, 5166, (Angew. Chem., Int. Ed., 2004, 43, 5056); (c) I. K. Mati and S. L. Cockroft, Chem. Soc. Rev., 2010, 39, 4195.
- 26 (a) R. G. Pearson, J. Am. Chem. Soc., 1963, 85, 3533; (b) R. G. Pearson, J. Chem. Educ., 1987, 64, 561.
- 27 Calculated values by B3LYP/6-31+G* with SPARTAN'08 software. Full citation of the software is shown in the Supporting Information
- 28 R. Ehama, M. Tsushima, T. Yuzuri, H. Suezawa, K. Sakakibara and M. Hirota, Bull. Chem. Soc. Jpn., 1993, 66, 814.
- 29 (a) S. Paliwai, S. Geib and C. S. Wilcox, J. Am. Chem. Soc., 1994, 116, 4497; (b) K. Nakamura and K. N. Houk, Org. Lett., 1999, 1, 2049.
- 30 The HOMO level of supramolecule A is -6.48 eV (B3LYP/6-31+G*), slightly lower than that of pristine C₆₀ (-6.40 eV), indicating a weak orbital interaction as depicted in Fig. 4a. On the other hand, the HOMO level of B is -6.35 eV, indicating no orbital interaction between C₆₀ and CHCl₃